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A relativistic study of the nucleon form factors?
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Abstract. We perform a calculation of the relativistic corrections to the electromagnetic elastic form factors
of the nucleon obtained with various Constituent Quark Models. With respect to the non relativistic
calculations a substantial improvement is obtained up to Q2 ' 2(GeV/c)2.

PACS. 12.39.Ki Relativistic quark model – 13.40.Gp Electromagnetic form factors – 14.20.Dh Protons
and neutrons

1 Introduction

The non relativistic constituent quark models (CQM) have
given good results in the study of the static properties of
the nucleon [1,2], like the baryon spectrum and the mag-
netic moments, and in a qualitative reproduction of the
photocouplings [3–5]. However, the standard CQ-Models
are unable to reproduce the Q2 behaviour of the electro-
magnetic form factors even in the low momentum transfer
[6–10].

The use of harmonic oscillator models give rise to form
factors which decrease too fast with respect to the exper-
imental data. Some improvement of this behaviour, spe-
cially in the case of the transition form factors, can be
obtained by using more realistic wave functions [9,5].
However, the problem of a reasonable description of the
elastic and transition form factors of the nucleon in the
framework of a Constituent Quark model is still open.

The inclusion of relativistic effects is expected to be
important in the description of the nucleon form factors.
The structure of the electromagnetic current of a rela-
tivistic bound system still represents an unsolved prob-
lem. Much attention has been recently devoted to this
problem, following substantially three main lines: the ex-
pansion of relativistic current operators in powers of the
inverse quark mass, 1

m , the evaluation of the current ma-
trix elements in a light-cone approach and the expansion
of the full relativistic current matrix elements, again in
powers of 1

m .
The first approach takes into account the relativis-

tic effects in the electromagnetic operators [11,12], the
baryon states being the standard CQM ones. This type of
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relativistic correction includes the qq̄-pair contribution to
two-body currents coming from the one-gluon exchange
[13,14]. The numerical results show that these effects are
significant but not sufficient to explain the data.

There are many interesting results obtained in a light-
cone approach [8,15,16], such as the fact that the rela-
tivistic corrections to the transition form factors are im-
portant at low Q2 [8] and that the root mean square
radius of the proton is increased [8,16]. This method is
very useful since it allows to perform calculations starting
from non relativistic wave functions. However there are
still some problems in extracting form factors from the
evaluated current matrix elements.

In this work we follow the third method which consists
of expanding the current matrix elements in powers of 1

m
[17,18] and we propose a simplified approach useful for
a preliminary calculation of the relativistic corrections to
the elastic electromagnetic form factors of the nucleon ob-
tained starting from different Constituent Quark Models.
The use of Lorentz boosts for the quark spinors ensures
that the relation between the dynamic variables of the
initial and final states is relativistically correct. On the
other hand, we assume that the quark internal motion is
well described by the standard non relativistic wave func-
tion. The current matrix elements are constructed with
a quark current operator containing only one-body terms
and no quark form factors are introduced. We point out
that the non relativistic expansion of the matrix elements
of the present work, up to order m−2, is coincident with
that given by standard procedures [20,19,18] introduced
for the few-nucleon systems and no approximation is done
with respect to the momentum transfer Q2 dependence.

In Sect. 2, we describe the evaluation of the current
matrix elements arriving at simple analytical expressions
for the form factors. In Sect. 3, we discuss the results ob-
tained with various 3q-wave functions and make a com-
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parison with the experimental data. A brief conclusion is
given in Sect. 4.

2 The current matrix elements

For the study of the transition process between the initial
(I) and final (F) states, we have to calculate the current
matrix element

JµFI = 〈ΨF |
3∑
i=1

jµ(i)|ΨI〉, (1)

where jµ(i) is the e.m. current of the i-th quark. We choose
the Breit frame and so the total initial and final tetramo-
menta PI = (EI ,P I), PF = (EF ,P F ) are related by

P I = −P F = −q
2
, EI = EF =

√
M2 +

q2

4
≡ E (2)

where q is the virtual photon momentum, Q2 = q2 and
M is the nucleon mass. We denote with p∗i (i = 1, 2, 3)
the quark tetramomenta in the nucleon rest frame and we
introduce the relative three-momenta

pρ =
1√
2

(p∗1 − p∗2), pλ =
1√
6

(p∗1 + p∗2 − 2p∗3) (3)

which are conjugated to the standard Jacobi coordinates
ρ and λ. The 3-quark state is assumed to be

ΨI =
3∏
i=1

Biui(p∗i )φ(pρ,pλ), (4)

where the Bi (i = 1, 2, 3) are the usual Dirac boost op-
erators that transform the quark spinors ui(p∗i ) from the
nucleon rest frame to the Breit one. The boosted spinors,
ψi = Biui(p∗i ), have the covariant normalization

ψ̄iψi = 1. (5)

In (4) φ(pρ,pλ) is the standard non relativistic 3q-wave
function, where for simplicity we have omitted the spin
and isospin variables. The final state is written in a similar
way. The current operator of the i-th quark, jµ(i), has the
form

jµ(i) =
√
m

ε′i
γµi

√
m

εi
, (6)

where m is the quark mass and εi (ε′i) is the initial (final)
quark energy in the Breit frame. The normalization factors√

m
ε′
i
,
√

m
εi

, have been introduced in order to obtain for the

current matrix elements the correct expantion in powers
of 1

m (i.e. coincident with what is usually quoted in the
literature) as shown in [20]. The quark energies εi, ε′i are
then expressed in terms of the corresponding quantities
in the nucleon rest frame by means of standard Lorentz
transformations.

Finally, we add a factor 2E to the matrix element of
(1) in order to take into account the normalization of the
total matrix element.

Because of the antisymmetry of the 3q-states, we can
substitute

∑3
i=1 jµ(i) with 3jµ(3). The interacting quark

absorbs the photon threemomentum in the Breit frame
and therefore taking into account the Lorentz boost on
the 3-quark, we can write the momentum conservation as
follows:

p′λ = pλ −
√

2
3
M

E
q, p′ρ = pρ (7)

where the apices refer to the final momenta. The result-
ing expression for the current matrix element is compli-
cated because of the presence of non local terms coming
from the momentum dependence and the calculation can
be performed numerically. However, in order to arrive at
a preliminary calculation of the relativistic corrections to
the e.m. current, we introduce some simplified assump-
tions.

First, consistently with the use of a non relativistic
model for the internal nucleon dynamics we approximate
the quark energies in the nucleon rest frame as ε∗i ' m.
Furthermore, we perform an expansion keeping contribu-
tions up to the first order in the relative quark momenta,
but we treat exactly the dependence on the momentum
transfer q. To this end, we introduce in the current ma-
trix element of (1) the variable πλ that is related to pλ
and p′λ in the following way

p′λ = πλ −
1
2

√
2
3
M

E
q (8)

pλ = πλ +
1
2

√
2
3
M

E
q. (9)

From the previous equations one also has

πλ =
1
2

(p′λ + pλ). (10)

We expand the current matrix element of (1) by keeping
up to the linear terms in πλ and pρ. In correspondence,
the electric and magnetic form factors have zero- and first-
order contributions.

The results for the zero-th order charge and magnetic
form factors can be given in a simple analytical form

G
(0)
E (Q2) =

E

M
(tS)2tIG

nr
E (Q2M

2

E2
) (11)

G
(0)
M (Q2) =

E

M
(tS)2tI

gσ
2m

GnrM (Q2M
2

E2
), (12)

where GnrE , and GnrM are the electric and magnetic form
factors as given by the non relativistic quark model. The
quantities tS , tI and gσ

tS =
1

Mm

[
EηS −

M

E

Q2

12
]
, (13)

tI =
Mm

EηI + MQ2

6E

(14)
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gσ =
2
3

+
ηI
M

(15)

with

ηS =
[
m2 +

M2

36E2
Q2
]1/2

, (16)

ηI =
[
m2 +

M2

9E2
Q2
]1/2

, (17)

as multiplicative factors.
The first order contribution to the charge density ma-

trix element is essentially of spin-orbit nature and a non
relativistic expansion up to order m−2 gives the sum of
the standard and the anomalous spin-orbit terms. The
first order term will be omitted in our calculations, since
it gives a numerically negligible contribution for nucleon
states which, according to the models we use, are mainly
in S-wave. The first order corrections to the magnetic form
factors are of two types, spin-orbit like and convective. The
first one can be disregarded for the same reason quoted
above for the charge form factor, while the convective part
gives in any case a small contribution.

Therefore, within these approximations, the relativis-
tic corrections introduce two kinds of modifications with
respect to the non relativistic treatment: a multiplicative
factor coming from the expansion of the quark spinors and
the argument of the non relativistic form factors, i.e. the
momentum transfer squared Q2, being replaced by Q2M2

E2 .
The current matrix elements must satisfy the current

conservation equation

qµJ
µ
FI = 0, (18)

and it is satisfied in our case since the Constituent Quark
Models we have used are based on local interactions.

3 Results and comparison with experimental
data

The form factors of (11) and (12) can be calculated us-
ing as input the nucleon form factors obtained in a non
relativistic quark model. We present the results for dif-
ferent choices of the quark interaction, namely the h.o.
[1] (Fig. 1), the three-body force hypercentral potential
[21] (Fig. 2) and an exactly solvable potential based on a
hypercoulomb interaction [9] (Fig. 2). All these models
have been used for the description of the spectrum [1,
21,9] and of the photocouplings [3–5,9]. The three-body
force approach has allowed also a systematic analysis of
the transition form factors for the excitation of the baryon
resonances [10]. All of them contain also a spin dependent
(hyperfine) interaction, which is essential for the descrip-
tion of the N −∆ splitting and for the excitation of quite
a few resonances. For the elastic form factors, the configu-
ration mixing coming from the hyperfine interaction does
not produce strong effects, apart from the neutron charge
form factor, and we shall omit it here.

In the h.o. case, the choice of the h.o. parameter α
is crucial. There are many different values of α quoted

in the literature, according to the quantities to be fit-
ted [22]. We report in Fig. 1 the results obtained with
1) α = 0.229GeV , which gives the correct r.m.s. radius of
the proton [1,23] without the relativistic corrections, and
2) α = 0.410GeV , which is necessary in order to reproduce
the photoexcitation of the D13 and F15 resonances [3,4]
and corresponds to a confinement radius of the order of
0.5 fm. We note that the relativistic corrections increase
the r.m.s. with respect to the non relativistic calculation
[24]. In fact from (11) one gets, for the h.o. proton charge
form factor,

< r2 >=
1
α2

+
6
M2

, (19)

where M is the nucleon mass and m = M
3 . In order to get

the correct radius one should use α = 0.285 GeV , which
however is not too different from the choice 1). The results
of Fig. 1 show that the relativistic corrections improve the
h.o. form factors, but the Q2 behaviour is still different
from the experimental data.

In Fig. 2 we give the form factors obtained starting
from the non relativistic calculation performed with the
three-body force potential of [21]. This potential has the
form V (x) = − τx +bconfx, where x is the hyperradius x =√
ρ2 + λ2 and the values of the parameters are τ = 4.59

and bconf = 1.61 fm−2. It should be noted that with this
choice of the parameters and the inclusion of the standard
hyperfine interaction, the three-body force allows to de-
scribe consistently the non-strange baryon spectrum [21],
the photocouplings [5] and the electromagnetic transition
form factors [10].

In Fig. 2 we give also the results for the solvable model
of [9]. It is based on the hypercoulomb potential Vhyc(x) =
− τx , with τ = 6.39, to which a small confinement term is
added. The advantage of this potential is that the results
can be given in analytical form. For instance, the proton
charge form factor is given by

GnrE (Q2) =
1

[1 + 25
24

Q2

τ2m2 ]
7
2
. (20)

which, at variance with the h.o. case, for large Q2 has a
power-law behaviour.

From the analysis of the results of Figs. 1 and 2, one
sees that in general the inclusion of relativistic correc-
tions improves significantly the non relativistic calcula-
tions. The improvement at low Q2 is related to the cor-
rect non relativistic limit of the current matrix elements.
The improvement at higher Q2 depends on the relation
between the initial and final state variables and allows to
keep exactly the Q2 dependence of the form factors.

It should be noted that the simultaneous reproduction
of the spectrum and the photocouplings requires a con-
finement radius of the order of 0.5 fm [3,4,21,5] and the
relativistic increase is quite beneficial, but it is still not
sufficient to get nearer to the data. In particular there
still remain problems in the Q2 behaviour in the low and
medium range. Similar problems are encountered also in
the transition form factors, both in the relativistic [8] and
in the non relativistic [10,9] calculations, and so one can
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Fig. 1. The charge a and magnetic b form factor
of the proton and c the magnetic form factor of
the neutron. The curves are the h.o. calculations
using α = 0.229 GeV (dotted and dot-dashed) or
α = 0.410 GeV (dashed and full). The dashed and
dotted curves are the non relativistic calculations,
the full and dot-dashed are the corresponding rela-
tivistic ones, obtained from (11) and (12). The ex-
perimental data are taken from the compilation of
[15]
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Fig. 2. The charge a and magnetic b form factor
of the proton and c the magnetic form factor of the
neutron. The curves obtained using the model of [21]
are the non relativistic (dashed) and relativistic cal-
culations (full). The curves obtained using the model
of [9] are the non relativistic (dotted) and relativistic
calculations (dot-dashed). The data are the same as
in Fig. 1
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think that not only the relativistic corrections are respon-
sible for the discrepancies between the CQM calculations
and the experimental data. As already noted elsewhere
[10,9,6], some fundamental dynamical mechanism (effec-
tive at large distance, which means at low Q2)is still lack-
ing, such as the explicit inclusion of quark-antiquark pairs
both in the baryon states and in the electromagnetic tran-
sition operator.

4 Conclusions

We have calculated the relativistic corrections to the elas-
tic nucleon form factors in a simplified and preliminary
approach which leads to simple analytical expressions. We
have used as input different Constituent Quark Models,
namely the harmonic oscillator [1], the hypercentral model
of [21] and the analytical model of [9] showing that in all
the three models the relativistic corrections are important,
since they bring the non relativistic calculations nearer to
the data, but still they are not sufficient. The persisting
discrepancy may be an indication that further degrees of
freedom (qq̄-pairs, gluons) should be included in the CQM
in a more explicit way.

We gratefully thank Prof. D.Prosperi for many useful discus-
sions and suggestions during the development of the present
work.
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